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GENTLEMEN: when some weeks ago I had the honour to draw your at-
tention to a new formula which seemed to me to be suited to express the law
of the distribution of radiation energy over the whole range of the normal
spectrum [1], I mentioned already then that in my opinion the usefulness
of this equation was not based only on the apparently close agreement of
the few numbers, which I could then communicate, with the available ex-
perimental data,1 but mainly on the simple structure of the formula and
especially on the fact that it gave a very simple logarithmic expression for
the dependence of the entropy of an irradiated monochromatic vibrating
resonator on its vibrational energy. This formula seemed to promise in any
case the possibility of a general interpretation much rather than other equa-
tions which have been proposed, apart from Wien’s formula which, however,
was not confirmed by experiment.
Entropy means disorder, and I thought that one should find this disorder

in the irregularity with which even in a completely stationary radiation field
the vibrations of the resonator change their amplitude and phase, as long as
considers time intervals long compared to the period of one vibration, but
short compared to the duration of a measurement. The constant energy of
the stationary vibrating resonator can thus only be considered to be a time

1Verh. Dtsch. Phys. Ges. Berlin 2, 237 (1900)
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average, or, put differently, to be an instantaneous average of the energies
of a large number of identical resonators which are in the same stationary
radiation field, but far enough from one another not to influence each other.
Since the entropy of a resonator is thus determined by the way in which
the energy is distributed at one time over many resonators, I suspected that
one should evaluate this quantity in the electromagnetic radiation theory by
introducing probability considerations, the importance of which for the sec-
ond law of thermodynamics was first of all discovered by Mr. Boltzmann[3].
This suspicion has been confirmed; I have been able to derive deductively an
expression for the entropy of a monochromatically vibrating resonator and
thus for the energy distribution in a stationary radiation state, that is, in the
normal spectrum. To do this it was only necessary to extend somewhat the
interpretation of the hypothesis of “natural radiation” which is introduced
in electromagnetic theory. Apart from this I have obtained other relations
which seem to me to be of considerable importance for other branches of
physics and also of chemistry.
I do not wish to give today this deduction – which is based on the laws

of electromagnetic radiation, thermodynamics and probability calculus –
systematically in all details, but rather to explain as clearly as possible the
real core of the theory. This can be done most easily by describing to you
a new, completely elementary treatment through which one can evaluate –
without knowing anything about a spectral formula or about any theory –
the distribution of a given amount of energy over the different colours of
the normal spectrum using one constant of nature only and after that the
value of the temperature of this energy radiation using a second constant of
nature. You will find many points in the treatment to be presented arbitrary
and complicated, but as I said a moment ago I do not want to pay attention
to a proof of the necessity and the simple, practical details, but to the clarity
and uniqueness of the given prescriptions for the solution of the problem.
Let us consider a large number of monochromatically vibrating resonator

– N of frequency ν (per second), N ′ of frequency ν ′, N ′′ of frequency ν ′′, ...,
with all N large number – which are at large distances apart and are enclosed
in a diathermic medium with light velocity c and bounded by reflecting walls.
Let the system contain a certain amount of energy, the total energy Et (erg)
which is present partly in the medium as travelling radiation and partly in
the resonators as vibrational energy. The question is how in a stationary
state this energy is distributed over the vibrations of the resonator and over
the various of the radiation present in the medium, and what will be the
temperature of the total system.
To answer this question we first of all consider the vebrations of the
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resonators and assign to them arbitrary definite energies, for instance, an
energy E to the N resonators ν, E′ to the N ′ resonators ν ′, . . . . The sum

E + E′ + E′′ + . . . = E0

must, of course, be less than Et. The remainer Et−E0 pertains then to the
radiation present in the medium. We must now give the distribution of the
energy over the separate resonators of each group, first of all the distribution
of the energy E over the N resonators of frequency ν. If E considered to
be continuously divisible quantity, this distribution is possible in infinitely
many ways. We consider, however – this is the most essential point of the
whole calculation – E to be composed of a very definite number of equal
parts and use thereto the constant of nature h = 6.55×10−27 erg · sec. This
constant multiplied by the common frequency ν of the resonators gives us
the energy element ε in erg, and dividing E by ε we get the number P of
energy elements which must be divided over the N resonators. If the ratio
is not an integer, we take for P an integer in the neighbourhood.
It is clear that the distribution of P energy elements over N resonators

can only take place in a finite, well–defined number of ways. Each of these
ways of distribution we call a ”complexion”, using an expression introduced
by Mr. Boltzmann for a similar quantity. If we denote the resonators by
the numbers 1, 2, 3, . . ., N , and write these in a row, and if we under each
resonator put the number of its energy elements, we get for each complexion
a symbol of the following form

1 2 3 4 5 6 7 8 9 10

7 38 11 0 9 2 20 4 4 5

We have taken here N = 10, P = 100. The number of all possible
complexions is clearly equal to the number of all possible sets of number
which one can obtain for lower sequence for given N and P . To exclude all
misunderstandings, we remark that two complexions must be considered to
be different if the corresponding sequences contain the same numbers, but
in different order. From the theory of permutations we get for the number
of all possible complexions

N(N + 1) · (N + 2) . . . (N + P − 1)
1 · 2 · 3 . . . P =

(N + P − 1)!
(N − 1)!P !

or to a sufficient approximations,

=
(N + P )N+P

NNPP
.
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We perform the same calculation for the resonators of the other groups,
by determining for each group of resonators the number of possible complex-
ions for the energy given to the group. The multiplication of all numbers
obtained in this way gives us then the total number R of all possible com-
plexions for the arbitrary assigned energy distribution over all resonators.
In the same way any other arbitrarily chosen energy distribution

E,E′, E′′ . . . will correspond to a definite number R of all possible complex-
ions which is evaluated in the above manner. Among all energy distributions
which are possible for a constant E0 = E +E

′ +E′′ + . . . there is one well–
defined one for which the number of possible complexions R0 is larger than
for any other distribution. We look for this distribution, if necessary by
trial, since this will just be the distribution taken up by the resonators in
the stationary radiation field, if they together possess the energy E0. This
quantities E,E′, E′′, . . . can then be expressed in terms of E0. Dividing E by
N,E′ by N ′, . . . we obtain the stationary value of the energy Uν , U ′ν′ , U

′′
ν′′ . . .

of a single resonator of each group, and thus also the spatial density of the
corresponding radiation energy in a diathermic medium in the spectral range
ν to ν + dν,

uνdν =
8πν2

c3
· Uνdν,

so that the energy of the medium is also determined.
Of all quantities which occur only E0 seems now still to be arbitrary.

One sees easily, however, how one can finally evaluate E0 from the total
energy Et, since if the chosen value of E0 leads, for instance, to too large a
value of Et, we must decrease it, and the other way round.
After the stationary energy distribution is thus determined using a con-

stant h, we can find the corresponding temperature ϑ in degrees absolute2

using a second constant of nature k = 1.346× 10−6 erg · degree−1 through
the equation

1

ϑ
= k

d ln R0

dE0
.

The product k ln ·R0 is the entropy of the system of resonators; it is the
sum of the entropy of all separate resonators.
It would, to be sure, be very complicated to perform explicity the above–

mentioned calculations, although it would not be without some interest to
test the truth of the attainable degree of approximation in a simple case.
A more general calculation which is performed very simply, using the above

2 The original states “degrees centigrade” which is clearly a slip [D. t. H.]
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prescriptions shows much more directly that the normal energy distribu-
tion determined in this way for a medium containing radiation is given by
expression

uνdν =
8πν3

c3
dν

ehν/kϑ − 1
which corresponds exactly to the spectral formula which I give earlier

Eλdλ =
c1λ
−5

ec2/λϑ − 1dλ.

The formal differences are due to the differences in the definitions of uν
and Eλ. The first equation is somewhat more general inasfar as it is valid
for arbitrary diathermic medium with light velosity c. The numerical values
of h and k which I mentioned were calculated from that equation using the
measurements by F . Kurlbaum and by O. Lummer and E. Pringsheim.3

I shall now make a few short remarks about the question of the necessity
of the above given deduction. The fact that the chosen energy element ε for
a given group of resonators must be proportional to the frequency ν follows
immediately from the extremely important Wien displacement law. The
relation between u and U is one of the basic equations of the electromagnetic
theory of radiation. Apart from that, the whole deduction is based upon
the theorem that the entropy of a system of resonators with given energy is
proportional to the logarithm of the total number of possible complexions for
the given energy. This theorem can be split into two other theorems: (1) The
entropy of the system in a given state is proportional to the logarithm of the
probability of that state, and (2) The probability of any state is proportional
to the number of corresponding complexions, or, in other words, any definite
complexion is equally probable as any other complexion. The first theorem
is, as for as radiative phenomena are concerned, just a definition of the
probability of the state, insofar as we have for energy radiation no other
a priori way to define the probability that the definition of its entropy.
We have here a distinction from the corresponding situation in the kinetic
theory of gases. The second theorem is the core of the whole of the theory
presented here: in the last resort its proof can only be given empirically.
It can also be understood as a more detailed definition of the hypothesis of
natural radiation which I have introduced. This hypothesis I have expressed
before [6] only in the form that the energy of the radiation is completely
”randomly” distributed over the various partial vibrations present in the

3F. Kurlbaum [4] gives S100 − S0 = 0.0731 Watt cm−2, while O. Lummer and E.
Pringsheim [5] give λmϑ = 2940µ · degree.
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radiation.4 I plan to communicate elsewhere in detail the considerations,
which have only been sketched here, with all calculations and with a survey
of the development of the theory up to the present.
To conclude I may point to an important consequence of this theory

which at the same time makes possible a further test of its reliability. Mr.
Boltzmann [7] has shown that the entropy of a monatomic gas in equilib-
rium is equal to ωR lnP0, where P0 is the number of possible complexions
(the “permutability”) corresponding to the most probable velocity distri-
bution, R being the well known gas constant (8.31 × 107 for O = 16), ω
the ratio of the mass of a real molecule to the mass of a mole, which is
the same for all substances. If there are any radiating resonators present
in the gas, the entropy of the total system must according to the theory
developed here be proportional to the logarithm of the number of all pos-
sible complexions, including both velocities and radiation. Since according
to the electromagnetic theory of the radiation the velocities of the atoms
are completely independent of the distribution of the radiation energy, the
total number of complexions is simply equal to the product of the number
relating to the velocities and the number relating to the radiation. For the
total entropy we have thus

f ln (P0R0) = f ln P0 + f ln R0,

where f is a factor of proportionality. Comparing this with the earlier
expressions we find

f = ωR = k,

or

ω =
k

R
= 1.62× 10−24,

that is, a real molecule is 1.62×10−24 of a mole or, a hydrogen atom weighs
1.64 × 10−24 g, since H = 1.01, or, in a mole of any substance there are
1/ω = 6.175× 1023 real molecules. Mr. O.E Mayer [8] gives for this number
640× 1021 which agrees closely.

4When Mr. Wien in his Paris report about the theoretical radiation laws did not find
my theory on the irreversible radiation phenomena satisfactory since it did not give the
proof that the hypothesis of natural radiation is the only one which leads to irreversibility,
he surely demanded, in my opinion, too much of this hypothesis. If one could prove
the hypothesis, it would no longer be a hypothesis, and one did not have to formulate
it. However, one could then not derive anything new from it. From the same point of
view one should also declare the kinetic theory of gases to be unsatisfactory since nobody
has yet proved that the atomistic hypothesis is the only which explains irreversibility. A
similar objection could with more or less justice be raised against all inductively obtained
theories.
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Loschmidt’s number L, that is, the number of gas molecules in 1 cm3 at
0◦ C and 1 atm is

L =
1 013 200

R · 273 · ω = 2.76× 10
19.

Mr. Drude [9] finds L = 2.1× 1019.
The Boltzmann-Drude constant α, that is, the average kinetic energy of

an atom at the absolute temperature 1 is

α =
3

2
ωR =

3

2
k = 2.02× 10−16.

Mr. Drude [9] finds α = 2.65× 10−16.
The elementary quantum of electricity e, that is, the electrical charge of

a positive monovalent ion or of an electron is, if ε is the known charge of a
monovalent mole,

e = εω = 4.69× 10−10c.s.u.
Mr. F. Richarz [10] finds 1.29 × 10−10 and Mr. Thomson [11] recently
6.5× 10−10.
If the theory is at all correct, all these relations should be not approxi-

mately, but absolutely, valid. The accuracy of the calculated number is thus
essentially the same as that of the relatively worst known, the radiation
constant k, and is thus much better than all determinations up to now. To
test it by more direct methods should be both an important and a necessary
task for further research.
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