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The narrowing of a falling stream of liquid is a well-known demonstration of the equation of
continuity. We consider the behavior of the bottom of a falling liquid stream where the stream ceases
to narrow, and swells and forms droplets. Drop formation is demonstrated by detailed photos of
experiments. A simple mathematical description of the observations is given, including the key
processes responsible for drop formation. © 2005 American Association of Physics Teachers.
#DOI: 10.1119/1.1866100$

I. INTRODUCTION

Drop formation in a falling stream of liquid is an interest-
ing and commonly observed phenomenon that has been a
subject of much research from the beginnings of hydrody-
namic theory. It soon was realized that surface tension is the
driving force in drop formation, because it tends to reduce
the surface area by decreasing the radius of the stream. In the
19th century the phenomenon was described by Rayleigh.1–3
By using a stability analysis of an infinite cylinder of liquid
with radius r0 , Rayleigh studied perturbations of different
wavelengths and calculated their growth rates. Although long
wavelength perturbations tend to form large drops with the
smallest possible surface area, large mass transport between
the drops is required. Surface tension and inertia strike a
balance at the wavelength %!9r0 . In other words, drop for-
mation depends crucially on the ratio between inertia and
surface tension, which is known as the Weber number.4
Subsequently, the theory of drop formation was refined by

including the viscosity,5 higher order nonlinear effects,6 and
surface charges.7 Recently, drop breakup studies have been
devoted to the idea of scale invariance.8–11 The break up
process becomes scale invariant if the dynamics is governed
by proximity to the thinnest point in the neck, where the drop
eventually breaks apart. Here the fluid decreases in diameter
until its thickness goes to zero, and, at some point, it has
become so much smaller than any other macroscopic length
in the system that the larger lengths no longer matter for a
description of the neck itself. The dynamics depends only on
the thickness of the neck and does not depend on the size of
the nozzle or the size of the drop. Therefore, all memory of
the initial and boundary conditions is lost. Some important
exceptions to this type of behavior have recently been
analyzed.11
The importance of visualization of drop formation has

been understood from the outset of studies in this field. In
1833 Savart investigated the decay of fluid jets by illuminat-
ing a jet with sheets of light. He observed undulations grow-
ing on a jet of water that cause the breaking of the jet and
subsequent drop formation.8 The development of photogra-
phy and the recent use of computers gave us new ability to
visualize the dynamics of drop formation. The development
of visualization from early photographs taken by Rayleigh12
to the first high-resolution photographs of water falling from
a faucet taken by Peregrine et al.13 are reviewed in Ref. 8.
Although drop formation can be experimentally observed

and analyzed, its quantitative mathematical description is
difficult. The theory of drop formation based on the Navier-

Stokes equations3,8,14,15 is not accessible to undergraduates.
Simplifications of the theory using one-dimensional approxi-
mations of the Navier-Stokes equations14 are also too diffi-
cult.
In this paper we suggest a semi-quantitative approach to

drop formation. The quantitative description involves only
the key processes involved in drop formation in a falling
stream of liquid, which require understanding about the con-
cepts of surface tension, pressure in liquids, and conservation
of volume flux in noncompressible liquids !the equation of
continuity". Our study concerns Newtonian fluids for which
previous experimental observations10,16 have shown that the
free-surface shapes of the fluid are very similar when ap-
proaching the pinch point. The dynamics become universal,
that is, independent of initial conditions such as the nozzle
radius and independent of the experimental method of form-
ing the droplets,8 whether it is by a jetting, liquid bridge, or
dripping experiment !as performed in this study".
As a starting point, we consider the narrowing of a stream

of water coming from a faucet. The narrowing of the stream
of a nonviscous liquid represents an analytically solvable
problem.17,18 We are interested in the bottom part of the fall-
ing stream of water, where the transition from a thin stream
into drops takes place.

II. NARROWING OF A FALLING STREAM
OF LIQUID

The cross-section of a stream of liquid coming from a
faucet becomes smaller due to the Earth’s gravitation. For a
falling stream of liquid with cross-section S0 and velocity v0
at the faucet !see Fig. 1", we can calculate the cross-section S
and the velocity of water v at a time t later. According to the
equation of continuity, the conservation of the volume flux
ΦV , we can write

ΦV!S0v0!Sv . !1"

Due to gravity, the velocity v changes with distance from the
faucet, h:

v2!v0
2"2gh . !2"

The substitution of Eq. !2" into Eq. !1" gives

S!S0
v0

!v0
2"2gh

. !3"
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The radius of the stream of water, r , follows directly from
Eq. !3" by taking into account the relations S!&r2 and S0
!&r0

2 !see Fig. 1":

r!r0!4 v0
2

v0
2"2gh

. !4"

It is impressive how well Eq. !4" predicts the form of a
real stream of water. Figure 2 shows a photo of a falling
stream of water and the superimposed solution obtained from
Eq. !4". The latter closely matches the form of the real
stream.
To obtain the results in Fig. 2, the initial velocity of the

stream, v0 , has to be measured very accurately. We propose
an effective procedure in which v0 can be accurately deter-
mined by measuring the volume flux of water ΦV . We sim-
ply measure the volume V of water flowing into a glass and
the time t taken to fill it. Because ΦV!const, it follows that
ΦV!V/t . From the relation ΦV!S0v0 , we can express v0
as:

v0!
V
S0t

. !5"

For the experimental system shown in Fig. 2, the initial
velocity is v0!11.0#0.5 cm/s. If we use this value in Eq.
!4", the radius as a function of h of the stream of water can
be calculated, and the results compared with experiment as
shown in Fig. 2.

Fig. 2. Photo of a falling stream of water with the analytical solution of the
form of the stream. Experimental measurements: r0!0.50#0.02 cm, v0
!11.0#0.5 cm/s; the calculations were done with r0!0.50 cm and v0
!11.0 cm/s.

Fig. 3. Drop formation at the bottom of a stream of water. The drops grow
as swellings in the stream.

Fig. 1. Narrowing of a stream of liquid falling from a tap.
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III. DROP FORMATION

The narrowing of a falling stream of liquid discussed in
Sec. II closely models the form of a real stream. However,
this model holds only for the upper part of the stream. The
bottom part of the stream where drops are formed requires
additional explanation. In Fig. 3 we see that at the bottom of
the stream, the stream does not become narrower; rather, it
swells again.
At the top of the stream, perturbations in the stream cause

waves of very small amplitude that cannot be easily ob-
served. The undulations grow in time and cause drop forma-
tion at the bottom of the stream. This process is favored by
surface tension because the surface area of the liquid tends to
be reduced. It would be desirable to collect all the fluid into

one sphere, corresponding to the smallest surface area. How-
ever, the surface tension has to work against inertia, which
opposes fluid motion over long distances. The two effects,
surface tension and inertia, strike a balance and smaller drops
are formed.
To understand the growth of undulations in a stream of

water, we recall the expression for the pressure in a stream of
liquid. We locally approximate the stream of water by a cyl-
inder. Due to surface tension, the pressure in the cylinder is
larger than in the surrounding air. The pressure difference
between the pressure in the stream, p , and the surrounding
air pressure, p0 , 'p!p$p0 , acting on the surface of the
cylinder, S , is equal to the surface tension force F !see Fig.
4":

'pS$2F cos(!0. !6"

We write S!2rl , where l is the length of the cylinder, and
F!)l , where ) is the surface tension, and express 'p as

'p!)
cos(

r . !7"

Because r!R cos(, 'p is given by

Fig. 4. Cross-section of the cylindrical stream of liquid. The pressure dif-
ference 'p acting on the surface S of the cylinder is in balance with the
force of surface tension F .

Fig. 5. Early phase of drop formation: !a" schematic presentation and !b"
photograph. The liquid flows from a location with higher pressure p1 into a
swelling with lower pressure p2 .

Fig. 6. End phase of drop formation: !a" schematic presentation and !b"
photo. The liquid flows from an area of higher pressure p1 into a spherical
drop with lower pressure p2 .
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'p!)
1
R . !8"

Equation !8" shows that the pressure in the stream is larger
where the stream has a smaller radius and vice versa. Ac-
cording to Eq. !8", the liquid flows from an environment of
higher pressure p1 into the swelling of the stream with lower
pressure p2 !see Fig. 5". The driving force, p1$p2 , for the
flow of liquid into the swelling can be approximated by us-
ing Eq. !8" for both regions 1 and 2 !see Fig. 5":

p1$p2!)! 1R1 $
1
R2

" . !9"

Figure 5 shows that region 2 is not an ideal cylinder, and
hence Eq. !9" is just a rough approximation for the driving

force for the flow of liquid into the growing drop. For a more
accurate estimation of the pressure in the growing drop, both
radii of curvature have to be taken into account. In analogy
to the derivation of Eq. !8", the pressure in the growing drop
can be expressed more accurately by

p2$p0!)! 1R2,I" 1
R2,II

" , !10"

Fig. 7. Drop formation showing the dependence on the surface tension of
liquid: !a" fresh water with surface tension 0.073 N/m !drops form at h
!5#1 cm) and !b" soapy water with surface tension 0.03 N/m !drops form
at h!15#2 cm). The experiment was done for r0!2.0#0.2 mm and v0
!5.0#0.5 cm/s.

Fig. 8. Drop formation showing the dependence on the irregularity of a
stream of water: !a" no external forcing and !b" additional external pertur-
bations.
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where R2,I and R2,II are the principal radii of the surface
curvature.
At the beginning of drop formation, where the stream

swells slightly, Eq. !9" is a good approximation for the driv-
ing force because R2,II%R2,I and Eq. !10" simplifies to Eq.
!8". However, in the later process of drop growth, R2,I in-
creases and R2,II decreases. Finally, when the drop is close to
its spherical form !see Fig. 6", R2,I!R2,II!R2 , and the pres-
sure in the drop takes the value

p2$p0!
2)

R2
. !11"

Equation !11" also can be obtained directly by reasoning
similar to that leading to Eq. !6". The difference between the
pressure in the drop, p2 , and the surrounding air pressure,
p2$p0 , acting on the surface of the sphere equals the sur-
face tension F!)2&R2 , which gives (p2$p0)&R2

2

!)2&R2 , and hence Eq. !11" follows.
The driving force for the liquid flowing into the spherical

drop is given by

p1$p2!)! 1R1 $
2
R2

" . !12"

During the growth of a drop, R1 becomes smaller and R2
larger. According to Eq. !12", the driving force for the flow
of liquid into the drop becomes even larger. The liquid is
sucked into the drop, and, finally, the drop is separated from
the stream.
The dynamics of drop formation depends crucially on the

type of fluid. For a more comprehensive treatment of the
dynamics, see Ref. 19. It is shown that water does not pro-
duce long necks, but that oil can.16

IV. DISCUSSION

Because of gravity, a stream of liquid becomes narrower
as it falls. At the bottom of the stream, it swells again and
drops are formed. Here we discuss the influence of the sur-
face tension and external perturbations on the decay of a
liquid stream.
According to Eqs. !9" and !12", a larger surface tension

causes a larger driving force for the influx of liquid into
drops, and drop formation is accelerated; hence, the drops
are formed earlier in the stream, that is, closer to the nozzle.
The influence of surface tension on drop formation can be
tested by comparing drop formation in a stream of fresh wa-
ter and in a stream of soapy water !see Fig. 7", which has a
smaller surface tension than fresh water. We see that drops
are formed much earlier in a fresh water stream (h!5
#1 cm) than in a soapy water stream (h!15#2 cm). Both
streams have the same initial cross-section S0 and velocity
v0 .
Another important issue is the influence of perturbations

on the decay of a liquid stream, which can be simply dem-
onstrated by a slight shaking of the nozzle. If the external
perturbation is larger, measurable swellings in the stream ap-
pear earlier, and therefore the swellings also grow earlier into
drops, that is, the drops appear closer to the nozzle !Fig. 8".
A more comprehensive discussion of the influence of pertur-
bations on the decay of liquid streams is given in Ref. 8.
More viscous liquids can be studied experimentally. How-

ever, for highly viscous liquids, viscous dissipation can be
more important than inertia as the primary resistance against
surface tension, and, therefore, drop formation is mostly the
result of the balance between surface tension and viscous
dissipation. In general, a combination of all these effects,
surface tension, inertia, and viscous dissipation, is important
for drop formation in viscous liquids.
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